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ABSTRACT 

We consider a dependent percolation model on Z 2 that does not have the 
'finite energy' property. It is shown that the number of infinite clusters equals 
zero, one or infinity. Furthermore, we investigate a dynamical system which is 
associated with the calculation of the critical value in this model. It is shown 
that for almost all choices of the parameters in the model, this critical value 
can be calculated in a finite number of iterations. 

1. Introduction 

In [M], we introduced a dependent parametric percolation model on Z d, 
called circle percolation. Following tradition in percolation theory, our first 
results concerned the calculation of critical values and percolation functions. 
It was shown that in this model, these objects can in principal be calculated 
explicitly. The question that remained considered the finiteness of the calcula- 
tions. It was conjectured that for almost all choices of the parameters in the 
model, the critical value can be obtained in a finite number of iterations of a 
certain algorithm. 

In this paper, we consider the model on Z 2 only, and we will prove the 
conjecture in this case. Furthermore, we will use the special properties of the 
plane to study infinite clusters in this model. Only recently, R. M. Burton and 
M. Keane ([BKa]) proved that a stationary percolation model on Z d, having 

the so-called 'finite energy property', can have at most one infinite open cluster 
with probability one. However, our model, which will be defined in the 
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following section, does not have this property and it will turn out that the 

number of infinite open clusters can be equal to zero, one or infinity. 

In [BKb], topological properties of  infinite clusters in two-dimensional 
stationary percolation models were studied. It was shown that, basically, an 

infinite cluster is either a topological strip, half-plane or plane. We prove in 

Section 4 that in our model, which is stationary, infinite clusters are either 

contained in strips, or basically the whole plane, which is in nice agreement 

with the results in [BKb]. Clusters like half-planes do not occur in our model. 

The paper is organized as follows. In Section 2, we define our model and we 

summarize those results from [M] which we need here. Sections 3 and 4 are 

devoted to an analysis of  the structure and number of infinite clusters. The 
statements mentioned above will be proved there. The final section is devoted 

to a proof of the conjecture mentioned in the first paragraph. 

2. The model 

We will discuss a percolation model on Z 2 and we start by fixing notation 

and terminology in this space. Elements of Z 2, called vertices, will usually be 

denoted by z or z', the unit vectors by e] and e2 respectively, and the null vector 

by 0. A path in Z 2 is a (possibly infinite) sequence ~ = (~Zo, 7tl . . . .  ) such that 
~t,- ~ Z 2 and d(gi, lti + 1) = 1, for all i >_- 0, where d denotes Euclidean distance. A 
circuit is a path (1to,.. . ,  7tn) such that 7t 0 = tin and 7ri ~: ~zj for all (i , j)  ~ (0, n). 
A path is called self-avoiding if it contains no circuits. The set of  all infinite self- 

avoiding paths is denoted by H. 
In percolation theory, one studies random configurations o f Z  2 in which each 

vertex can be in two possible states: it is either open or closed. An open path is a 

path whose elements are all open. Two open vertices z and z" are said to be 

connected if there exists an open path (Tto . . . . .  ~n) such that N0 = z and ltn = z'. 
An open cluster is a maximal set of  connected open vertices. Analogous 

definitions can be made with 'closed' instead of 'open'. Typical questions in 

percolation theory are the following: (i) Does there exist an infinite open/ 

closed cluster? (ii) Is 0 (or any other particular vertex) contained in an infinite 

cluster? (iii) How many infinite clusters arise? 

The answers to these questions of  course depend on the random mechanism 

which generates the configurations in Z 2. In this paper, we study the following 

model which we have called 'circle percolation' for obvious reasons: 

Let ~ -- R/Z, ~ /be  the ordinary Borel a-field and # be Lebesgue measure on 

t2. (f~, ~/, #) is our probability space. Let 0 _-< a _-< fl _-< ½ be two parameters, 
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subject to the condition that ka  + lfl = m for some k, l, m ~ Z implies k = l = 
m = 0. This condition is imposed only to avoid messy statements and is not at 
all essential. It is also the most interesting case because the associated 
configurations are not periodic in any direction. 

Now define, for 0 < p < 1, the random variable I~ : f2---- {open, closed} z~ as 
follows: 

We declare z = (zt, z 2 ) ~ Z  2 to be open in Ip(to) if 

z(to) := to + zla + z2fl (mod 1) < p,  

otherwise z is closed. It is easily seen that this is a stationary model. It is one of 
the few non-trivial percolation models in which the critical value m the 
smallest p for which there is a positive probability for the origin to be in an 
infinite open cluster m can be calculated; see [M] and Theorem 2.2 below. 
Further motivation follows from the following observation. Consider the 
following analogous model. Let ~ '  be the space [0, 1] z2 and /z' product 
Lebesgue measure on f~'. Define shifts T~,/'2 : D' ~ f~' by (Tlto)ij = toi + l,j and 
(T2to)tj = to~,j+l. Let Ap = {to E f t '  [ w00 < p}. Let z = (.71, z 2 ) ~ Z  2 be open iff 
(TOZl(T2)Z~(og)~Ap. Then we have a model for ordinary independent site 
percolation on Z 2. The analogy between the two models is clear, and this was 
the original motivation to study circle percolation. 

We remark that in this type of model, all independent  percolation models 
with parameter p ~ [0, 1] are coupled together. In the literature, it is used for 
example in Hammersley ([H]) for simulation purposes and in van den Berg 
and Keane ([BK]), where results on the continuity of the percolation function 
are proved. 

The first and second questions above were treated in [M], and the first part of 
this paper is concerned with the third. To make the paper self-contained, we 
recall some definitions and results from [M]. Let 

~ = 9Pp(a, fl) = {to E f~ I Cp.,o is infinite}, 

where Cp.,o denotes the open cluster in Ip(og) which contains 0. (Cp.,o is empty if 
0 is closed.) 9ap is called the percolation set of [0, p]. Obviously, to E ~p iff 
there exists an infinite self-avoiding open path of  the form :,t = (0, lt~, :,t2,...) in 
Ip(to). In such a case, we say that 09 percolates in [0, p] along x. The 
measurability of ~ was proved in [M] and of particular interest is the critical 

value, which is defined as 

Pc = pc(a, P) = inf{ p I > o}. 
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The next lemma can be useful. 

LEMMA 2.1 (cf. [M], Lemma 4.1). 

P c = i n f { p  [ ~p 4~ ~ } .  

PROOF. If o9~ ~p for some p, it is clear that [to, o9 + e] C ~p+~, for all 

e > 0 ,  because Cp+,.o,, ~ Cp.,o for all o9'~[o9, o9 + el. So if ~p ~ ~ ,  then 

p( ~p+~) > O for all e > O and we conclude that Pc = inf{ P l ~p 4: ~ }. • 

The following dynamical system is associated with the calculation of  pc. 
Let (9 = {(xl, x2, x3)~R 3 [ 0 _-< xi < x2 < x3} and define M:  (9-- (9 as follows: 

M(x~, x2, x3) = (Y~, Y2, Y3), where y~, Y2 and Y3 are the numbers x~, x2 - Xl and 
x3 - Xl arranged in increasing order. We now have the following result: 

THEOREM 2.2. Let  (a~ flo, Yo) = (a, fl, 1 - f l )  and let (a~+t, fl~+,,?~+,)= 
M(a,,  fl~, ?~), for all i > O. I f  

(,) aio + fl~o <-_ ?to, for some io~ N, 

then 

otherwise 

~o l + a  
p c  = < - -  

i=0 2 

Pc = (1 + a)/2. 

We always have Pc <= 1 - a. 

PROOF. See the proofs of Theorem 4.8 and Lemma 4.3 in [M]. • 

The first question that springs to mind reading this theorem is the following: 

Is it possible to decide whether or not (*) holds? Section 5 is devoted to this 

problem. In particular, we will show that for Lebesgue almost all choices of  

(a, f l)E R 2, the condition holds. 
~ i  0- 1 

Now we assume that (,) holds, and let y = i=o ai = Pc - (a~o + fl~o). We 
showed in [M] that ~p is a finite union of closed intervals which can be 

determined precisely. In particular,/t(~p~) > 0 so we have a discontinuous 

phase-transition. Now let o9 ~ ~po and let Zo~ Cp,.~ such that z0(og) >_- y. Define, 
for all t /~ [y, Pc], ~ as the set of  points t/' for which there exists a finite chain 

(do -= t/, d~ . . . .  , d~ -- r/') such that d; ~ dj if i # j ,  d iE[y ,  Pc] for all i, and 

d~ + i - d~ E { +_ a~, _ fl~0}. A little thought yields the conclusion that in such a 
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chain either d~ + ~ - di ~- {a~, - /3io} for all i or di + t - di E { - a~¢ [3~} for all i. 

We now have the following result: 

LEMMA 2.3. L e t  Zo(tO) be  as  above .  T h e n  

= z z(o ) = y } .  

PROOF. This follows from the proof  of  Theorem 4.8 in [M]. • 

3. A second critical value 

One of the purposes of  this paper is to determine the number of  infinite 

clusters in two-dimensional circle percolation. For this we should be able to 

decide whether or not two given open vertices are in different open clusters. As 

an example, let 

C * =  IO {(0,2n) U ( 1 , 2 n + l ) } ,  
n E Z  

and consider the configuration in which all sites in C* are closed and all sites in 

Z 2 \ C* are open; see Fig. 1. It is clear that in this situation there are two infinite 

open clusters, one on each side of  C*. They are separated by C*, which is no t  

an infinite closed cluster itself. So to get two infinite open clusters it is not 

necessary to have an infinite closed cluster. We now have to make some new 

definitions. A s tar -pa th  is defined as a normal path but now we only require 

that dot/, n~+l) < x/~ for all i >= 0. A s tar-c ircui t  is a finite star-path zt* = 

A 

Fig. 1. Elements of C* are black, the others white. 
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(Tt* . . . .  ,7t*) such that 7t8 ) = 7t*, 7t* ÷ ~t* for all ( i , j ) ÷  (0, n). Two open 

vertices are said to be star-connected if  there exists an open finite star-path 

joining them. An open star-cluster is a maximal set of  star-connected open 

vertices. Closed star-paths and closed star-clusters are defined analogously. 

The set C* above, for example, is a closed infinite star-cluster. The notion of  

star-connections appears in the literature in [SE] and [R] for example. 

The following remark is obvious in the light of  the example above: Let S be a 

strip and consider a configuration in which all vertices not in S are open and in 

which S contains a closed star-cluster which is unbounded in both directions of  

S. Then any two vertices on different sides of  S are not connected. I fS  does not 

contain such a star-cluster then any such two vertices are connected. 

The first step is to find out when infinite star-clusters arise in Ip(to) for 

0 _<- p < 1 and co ~ f2. For this we define 

DEFINITION 3.1. For 0 _--< p < 1, 

~)* ---- {co ~ I C'o, is infinite}, 

where C*~o denotes the open star-cluster in Ip(to) which contains 0. 

It is possible to prove the measurability of  ~)* directly, but this also follows 

from Theorem 3.3 below. Before we state and prove this theorem, we first 

prove the following simple lemma, needed in the proof  of  Theorem 3.3. 

LEMMA 3.2. Let  to E f~ and p > a. Let  7t be a path such that 7t,(to) _-< p for 

all n. I f  Tti( to)~(p - a, p ] for  some i >= 1 then 

•i- l(to) ~ [0, p -- a].  

PROOF. Let l, = 7t,+1 -- 7t~ for i _>-- 0. Suppose 7t,+~(to)E(p - a, p]. We will 

show that this leads to a contradiction. For this, we consider the four possible 

cases. If l, = era, we obtain by translation p + a > 1 + p - a, which means that 

2a > 1. This is impossible by our choice of  a. If  li -- - el, we obtain p - a - 

a < - 1 q- p which again leads to 2a > 1. The case in which lg -- _ e2 is treated 

analogously. • 

The following theorem tells us how to determine ~'* once ~p is known. The 

measurability of  2 "  follows immediately. 

THEOREM 3.3. (i) I f p  < 1 -- ct, then ~'* -- ~)p+~ n [0, p]. 

(ii) I f p  >-_ 1 - ~, then ~'* -- [0, p]. 

PROOF. (i) Suppose to E ~)* and to star-percolates in [0, p ] along 7t*. Then 
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zt* is open in Ip(to), for all i, so zt* + el is open  in Ip +a(to). Ifd(zt*,  4*+ 1) = v/~ 
for some i, it is clear that  n* and n*+l are connected  in Ip+~(to) via  ei ther  
zt* + e~ or  it*+ l + el. By induct ion,  we conclude that  for all i , j  ~ N, ~t* is 
connected  with n* in Ip+~(to). This  implies  that  Cp+~,~, is infinite and  we 
conclude that  to E ~p  + a. 

For  the reverse inclusion,  suppose to E ~p+~ A [0, p]  and  to percolates in 
[0, p + a] along ~. Define a subsequence (no, nt . . . .  ) o f (0 ,  l, 2 , . . . )  such that  
no = 0, ni+~ = min{n  > n~ [ lt/l(to) <_- p},  for all i >_- 0. We claim that  in Ip(to), 
1t/l, is s tar-connected with 7t/l .... for all i. Once we have shown this, we conclude  
that  ~t/l, is s tar-connected with zt/lj in Ip(to), for all i a n d j .  This  impl ies  that  C*,o 
is infinite and thus co ~ ~ * .  So it remains  to prove the claim. It follows f rom 
L e m m a  3.2 that  d(nn,, ~t/l,+,) _-< 2 for all i. I f  d(n/l,, zt/l,+,) _-< v /2  then zt/l, and  1t/l,+, 
are trivially s tar-connected in Ip(to). I f  d(~t~,, 1t/l,+) = 2, we have the following 
possibilities. 

(I) 7t/l,+,- n/l, = 2el, 
( I I )  n / l , + , -  1t/l, = - 2el, 
(III) 7t/l,+, - lt~, = 2e2, 

(IV) n / l , +  l - -  n / I  , = - -  2e2, 

Case (I). L e t j  be defined by nj < j  < n~ + i. Now ~tj(to) >_- 1 - a >_- 1 - fl and  
it follows that  (~tj + e2)(to) ~ [Ttn,+,(oJ), ltn,(to]), using the fact that  0 < a _-<fl _-< 
t This  means  that  7tj + e2 is open  in Ip(to) and  we conclude  that  1t/l, and  n/l,+, are 
s tar-connected in Ip(to) via nj + e2; see Fig. 2. 

Case (II). An analogous a rgument  again shows that  ltj + e2 is open  in Ip(to) 
and  the claim follows. 

Case (III), (IV). An analogous a rgument  shows that  ltj - et is open  in lp(to) 
and, again, nn, and  x/l,+, are s tar-connected via nj - el; see Fig. 2. This  proves 
the claim. 

(ii) Cons ider  any to ~ [0, p ] and  let 

/t ---- (0, el, el + e2, 2e~ + e2, 2el + 2e2 . . . .  ). 

It is easy to see that  i f  zt i( to)> p for some i _-> 1 then  ~i+_l(to)--< P. So the 
sequence it* = (0, rig,, ltk2,...), where kx = min{n  > 0l  zt/l(to) < p}  and  k i + l  = 

min{n  > k~ [ zt/l(to)__< p} for all i>_-0, is an infinite self-avoiding open star- 
path  in Ip(to) and  we conclude  that  to ~ ~ * .  As the reverse inclusion is trivial, 
this finishes the proof.  • 
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Fig. 2. Construction of an open star-path (dotted line) from an open path (solid line). The 
grey vertices are open in Ip+~(to) but closed in Ip(to). 

Now we can define a second critical value. 

DEFINITION 3.4. p* = p*(a, fl) = inf( p I > 0 }  

Using Theorem 3.3, it is easy to calculate p*: 

COROLLARY 3.5. p*(a, fl) = Pc(a, fl) - a. 

PROOF. AS in Lemma 2.1, we have p* = inf{ p [ ~ *  ~ ~ }. This, together 
with Theorem 3.3 and the fact that Pc --< 1 - a, proves the corollary. • 

In Section 2 we saw that Pc < (1 + a)/2. It now follows, using Corollary 3.5, 
that Pc < 1 - pc*. Equality only occurs if pc = (1 + a)/2 and this is the case iff 
( ,)  in Theorem 2.2 does not hold. 

The critical value p* appears in the literature in the context of  ordinary 
independent site percolation (see [SE], [R]). The relation between p* and Pc in 

that model is given by Pc + Pc* = 1 (see [R]). In our model strict inequality is 
valid in most cases. This suggests that it is possible to have infinite open 
clusters and infinite closed star-clusters simultaneously, i fp  is between the two 
critical values. 
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4. The number of infinite clusters 

In this section, we will determine the number  of infinite open clusters in 
Ip(to) as a function o f p  and 09. By symmetry, the number  of  infinite closed 
clusters then follows immediately. 

Only recently, R. M. Burton and M. Keane (see [BKb]) proved that in a 
stationary model that has the 'finite energy property' (see e.g. [NS]), the 
number  of infinite open clusters equals zero or one with probability one. It is 
easy to show directly that our model does not have this property but this also 
follows from the following theorem. 

Let Ap(og) denote the number  of infinite open clusters in Ip(to). Then we 
have 

THEOREM 4.1. (i) 
f 
~0, P < Pc, 

Ap(w) [ 1, p > l - p * ,  

for all o~ E ~.  

(ii) I f ( . )  in Theorem 2.2 holds, then 

Ap(~o) = ~ ,  Pc < P < 1 - Pc*, 

for all to E [2. 
In particular, Ar(w ) does not depend on w. 

If (.) does not hold and p = Pc = 1 - pc* we do not know the number  of 
infinite clusters, but we expect it to be infinity. 

To prove the theorem, we need the following lemma which we will state as 
being 'obvious'. A proof can be found in [K], Section 2.4, where the lemma 
follows as a special case of  a more general result. It is possible to give an easier 
proof  in this situation which proceeds by induction, but we leave this to the 
reader. Let, for any finite (star)-cluster C, the unique infinite component  of 
Z2\  C be denoted by ¢xt(C). 

LEMMA 4.2. Consider a configuration o f  the square lattice. Then any finite 
open cluster C is surrounded by a closed star-circuit, which can be written as 

{zEext(C)  [d(z, C ) =  1}. Furthermore, any finite open star-cluster C* is 
surrounded by a closed circuit, which can be written as 

{z~ex t (C*)  l d(z,  C*) < ,,/~}. 

The same is true with 'open" and 'closed" interchanged. 
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We start with the easy p roof  of  Theorem 4.1 (i). 

PROOF OF THEOREM 4.1 (i). The first assertion is trivial as for p < Pc there 

cannot  be an infinite open cluster because ~)p = ~ fo rp  < Pc, see Lemma 2.1. 

Now let to ~ f~  and p > l - p*. Consider  two arbitrary open vertices z and z '  

which are in an infinite open cluster. Such vertices exist because p > Pc and 

/ l (~p)  > 0 for all p > Pc. Now consider  any path joining these two vertices. 

Denote  this path by zt -- (no, • • . ,  nn) where n 0 = z and nn = z'. Consider  the 

first element of  this path, n~o say, which is closed and let i6"= min{n > i0 [ n~ is 

open}. Now n~0 is in a finite d o s e d  s tar-duster  and is therefore surrounded by 

an open circuit as in Lemma 4.2. It is easy to see that ni0-~ and n~6 are elements 

of  this circuit and hence are connected by an open path. It is now clear how to 

construct an open path joining z and z '  which implies that z and z '  are in the 

same cluster. Because z and z '  were arbitrary, this means that the infinite open 

cluster is unique and Theorem 4.1 (i) follows. • 

In the p roof  of  Theorem 4.1 (ii), we need the fact that finite dus ters  cannot  be 

too large in Ip(tO) for co ~ and p < Pc. The following lemma deals with this 

property.  

LEMMA 4.3. Let tO ~ ~ and p < &. Then there exists a constant K = K( p ) 

depending on p alone, such that for any two connected open vertices z and z', we 

have d(z ,  z ')  < K. 

PROOF. Suppose not. Then, for any i ~ N, there exist 09; ~ f l  and n i E I-I 

such that n~ (toi) _-< p for all i _-< nj, where lim~_~ n~ = or. Let tobe  a limit point  

o f  {to~} : limi-oo tOg, = tO, where (k~, k2 . . . .  ) is some subsequence o f ( l ,  2 , . . . ) .  
Now n k, can take only 4 values so there is at least one n~ E Z 2 such that n k, -- rh 

i.o. Select a further subsequence (k~, k~ , . . . )  o f  (kl, k2 . . . .  ) such that n k; = hi, 

for all i. Now there again is at least one nE~Z  2 such that n k;--n2 i.o. 

Proceeding in this way, we obtain a sequence n = (zq, n2 , . . . ) .  It is easy to see 

that n;(tO)_-< p for all i and that n ~ H ,  so tO ~ ~p.  But p < Pc so this is a 

contradiction,  using Lemma 2.1. • 

The most  important  step towards a p roof  of  Theorem 4.1 (ii) is the following 

lemma, which implies that we can control the shape of  infinite clusters. 

LEMMA 4.4. Let t o ~ f l  and consider I,,(to). Suppose ( , )  in Theorem 2.2 
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holds. Then each infinite open cluster is contained in a strip, and is unbounded 

in both directions o f  the strip. 

PROOF. Let y be as in Section 2. Choose zoGCpc,,o such that Zo(09)>y. 
According to Lemma 2.3 and the remark before this lemma, we can write 

{z ~ Cpc,,o [ z(09) > y} = R U R', where all elements of  R correspond with 

chains using - a~ o and Pio, and elements of R '  correspond with chains using a~ o 
and - flio. Now we can order the elements in R and R '  according to the length 

of the chain from z0 to those elements: R = (Zl, z2 . . . .  ) and R'  = (z~, z~ . . . .  ). It 
is not difficult to see that there exist two vectors v~ and v~ such that z~ + ~ - z~ E 

{ - v~, vp} and z;.+~ - z[E{v~, - vp} for all i. Consider the line 

l = {z E Z  2 [ z = z0 + 2(fl~oV~ + %vp), 2 ER}. 

Now z; lies above l iff z~(09) > z0(09), and below l iff z,(09) < z0(09). Analogous 

statements can be made for z[. Furthermore, the maximum number of  sub- 

sequent elements zg which are all below or all above l is easily seen 

to be bounded and the same is true for elements z;. We conclude that 

{z ~ Coc.,o [ z(09) > y } is contained in a strip S say, containing 1. In addition, z~ 

and z; tend to infinity in opposite directions of S if i tends to infinity. 

Now let z be any vertex in Cp~.,o, let 09' :=  z(09) and n be such that 09' 

percolates in [0, Pc] along zr. According to Lemma 4.3, there is a number 

k < K  = K(y)  such that nk(09') _-> y, where Kdoes not depend on z. This is to 

say that there exists a z* E {z E Cpc., o I z(09) > y } such that d(z, z*) < K. This 

implies that the whole cluster Cp,.,o is contained in a strip. • 

The corresponding statement concerning infinite star-clusters is made in the 
following lemma. 

L~MMA 4.5. Let 09 ~ [2 and consider Ip.( 09 ). Suppose (.)  holds in Theorem 
2.2. Then each infinite open star-cluster is contained in a strip and is unbounded 
in both directions o f  the strip. 

PROOF. Consider an infinite open star-cluster C* in Ipr(09). AS in the proof 

of Theorem 3.3, this star-cluster extends to fin infinite open cluster in Ipc(09 ). 

According to Lemma 4.4, this open cluster has all the properties mentioned in 

the lemma. Select a vertex z E C* such that there are two paths n~ and ~2 which 

tend to infinity in opposite directions of  the strip starting at z and which are 

open in Io~(09 ). The open infinite star-paths n ~* and n 2. obtained from n ~ and 

n 2 by decreasing Pc to p* as in the proof of Theorem 3.3 also tend to infinity in 
opposite directions of a strip. This proves the lemma. • 
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After these lemmas, the proof of the second part of  Theorem 4.1 is easy: 

PROOF OF THEOREM 4. l(ii). Let o~ ~ f~ and Pc -< P ~ 1 - p*. We men- 

tioned in Section 2 that /~(~p) > 0. From Theorem 3.3 it follows that also 
/t(~'*_p) > 0. Because ~ is irrational, there are infinitely many numbers ki, 

i E N  such that a~ + kia (mod 1)~ ~p which means that (ki, 0) is contained 

in an infinite open cluster for all i. Analogously, there are infinitely many 

numbers l~, i E N such that (/~, 0) is contained in an infinite closed star-cluster. 

It follows from Lemma 4.4, Lemma 4.5 and the remark at the beginning of 

Section 3 that if k~ < lj < k~ + ~ for some i and j ,  (k~, 0) and (k~ + ~, 0) are in 

different open clusters. From this it follows that there are infinitely many open 

clusters. Note that this also shows that there are infinitely many closed star- 

clusters. • 

We finish this section with an application of Theorem 4.1 (i). Consider the 

case in which Pc = (l + a)/2. It then follows that Pc = 1 - p*. It follows from 

the proof of Theorem 4. l(i) that there are no finite open clusters in Ip(oJ) for 

P > Pc. This implies that ~'p = [0, p] for allp > Pc. The following lemma now 

suffices to show that ~'pc = [0, Pc], thereby answering a question in [M]. 

LEMMA 4.6. If~p+~ = [0, p + e]for all 1 - p > e > 0, then ~'p = [0, p]. 

PROOF. Lete,~Oasn-~ooandletoJ~[O,p].Let, foralln,~z"besuchthat 
o~ percolates in [0, p + e,] along zt". It follows by a diagonal argument as in the 

proof of Lemma 4.3 that we can construct a 7t ~ H  such that a~ percolates in 
[0, p] along 7t. This implies that ~o ~ ~'p. Since o~ was arbitrary, this proves the 

lemma. • 

5. Finiteness of the calculation of the critical value 

In this section we discuss the dynamical system M associated with the 

calculation of pc in Section 2. Our aim is to prove that for almost all values of a 

and fl, the condition (.) in Theorem 2.2 holds. To decrease the dimension, we 

define the following: U' = ((a, f l ) E R 2 [  0 ~ a_--<fl _--< ½} and 2' denotes the 

normalized Lebesgue measure on U'. Let U be the set 

{ ( x , y ) E R  2 [0_-<x-<_y < 1} 

and let 2 denote the normalized Lebesgue measure on U. Let f :  U ' ~  U be 

defined as 
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f (a ,  fl) = 1 ' 1 fl " 

Then f is invertible and 

(x ,) 
f - ' ( x , y ) =  i + y l + y 

Observe that (,) in Theorem 2.2 is homogeneous: (,) holds for (a0, flo, 70) iff, for 
any positive constant c, ( ,)  also holds for (ca0, Cflo, C7o). Now let A C U b e  the 

set 
A = ((x, y ) E  U [( , )  does not hold for (x, y, 1)}. 

It is not difficult to see that A' = f -  ~(A) C U' is the set 

A' = ((a, f l )E U' [(*) does not hold for (a, fl, 1 - fl)}. 

To prove that 2'(A') = 0, it suffices to prove that 2(A) = 0. 

THEOREM 5.1. 2(A) = 0. 

The rest of this section is devoted to a proof  of this theorem. Suppose 
(xo, Y0) ~ U and consider the initial point (Xo, Y0, 1). For (,) to hold it makes no 
difference to divide all coefficients by the largest one after each iteration. 
Therefore we define N:  U ~ U as follows. If  M(x0, Y0, 1) = (x6, y6, z6) then 

N is given by 

N(xo, Yo)=( 8)  =: (x.y,). 
\z~ ' z U  

N ( x ,  y )  = 

,1 -x '  1-  

Xx) 
- - x  1 

~Y--Xx ' 1--xX) 

on Al, 

on A 2, 

on A3, 

where 
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see Fig. 3. 

A, = ((x,  y ) ~  U I 0 _-< 2x < y}, 

A 2 = { ( x , y ) ~ U I x  < < 2 x ,  x < ½) = Y  

A3 = {(x, y ) e  U Ix >_- ½}; 

Fig. 3. The regions Ai, i = 1, 2, 3. 

Let (xi+~,yi+~)=N(xi, yi) for all i > 1. Then (,) holds i f f fo r  some i0~N,  

xi o + y~ < 1. Let A_ -- {(x, y)  E U ] x + y < 1 }. We need to show that the set A, 

which can now be written as 

A = ((x, y ) E  U [N"(x,  y ) $ A _  for all n > 0}, 

has Lebesgue measure zero. To continue our analysis, we define the following 

sets: 

A+ = U \ A _ ,  

A ,  = ( ( x , y ) E U  Ix < y < 3x - 1), 

B ~ = { ( x , y ) ~ U l ( i + l ) x < y < ( i + 2 ) x , l > y > l - x  }, i = 0 , 1  . . . .  ; 

see Fig. 4. 

It is straightforward to check that N has the following properties: 

(i) A_ is N-invariant,  

(ii) N is 3 to 1, 

(iii) N(A,) = U for i = 1, 2, 3, 

(iv) N(B~) = B~_ ~ for i > 1, 

(v) N(A, )  = A_ and N-~(A_)  = 6 _  U A,. 
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Fig. 4. The regions A, and B~, i E N. 
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To avoid the 'bad' behaviour of  N in (0, 1) (N does not have 'enough 

expansion'), we follow a rather standard procedure to define the map T: A÷ --- 

A+ as follows: 

, o n B i ,  i > 1, 

T = on A2 n A + and A 3 \ A , ,  

I T '  onA, ,  

where T' is an arbitrary map from A, to A+. It is easy to check, using the 
properties of  N mentioned above, that 

{(x, y)e + I r (x, for all n >0} .  

We next define a 'partition' A = {Ai}?-i of  A+ as follows: A I = A . ,  A 2 = 

(A3\A,) ' ,  A3 -- (A2 N A+)', Ai+3 = B;,  i > 1, where C" denotes the interior of  

the set C. The reason why we consider interiors only is the fact that 

T(U~ ~A~) c U~ ~A~, where ~C denotes the boundary of the set C. This means 

that boundaries do not play any role in this story. T is C 2 on each Ai and we 

denote T I by T~. Then T~ is one-to-one and TF ~ is denoted by V~. 

We need some other concepts which we define first. The Euclidean norm of a 

vector or matrix is denoted by I • [, the supnorm of  a matrix by l[ " II • A map 

F :  E c R ~ ---R n is said to be z-expandingifinfl.  I - t  IDF(x).  u [ > z > 1 for all 

x E E .  A map f :  E C R n ~ R  such that If(x)l ÷ 0 for all x ~ E  is said to be 
K-regular if 
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I f ' (x) l  
- - < K ,  
If(x)l 

for all x E E and for some constant K. We now have the following lemma. 

LEMMA 5.2. (i) There exists a r > 1 such that T,. is z-expanding, uniformly 

i n i > 2 .  
(ii) Let JV~ denote the absolute value of  the Jacobian of  V,.. Then there exists a 

K ~ R such that JV,. is K-regular, uniformly in i > 2. 

PROOF. (i) We prove the assertion in the case i = 2, because this turns out 
to be the case with the least expansion. The remaining cases are treated 
analogously. We have 

T2(x, y) = (y - x l - x )  
X x 

Let G denote DT2. Then easy calculations show that 

and 

2 1 
IGI = ~ ( x E + y 2 +  1), 

1 
det G = - - - ÷  0. 

X 3 

We will use the following formula which can be easily obtained for all 
invertible 2 X 2 matrices: 

2 
II 6 - ,  112-  - [G [2 _ x/l G l 4 - 4(det G) 2" 

Let a := I G 12 and b := 2 det G. Then a >_- b. According to the last formula it is 

enough to show that there exists a z > l such that 

2 1 
a - ~ b 2 - z  ' 

uniformly in x and y (a and b depend on x and y). Rewriting this inequality 

yields 
a - x / a  2 - b 2 

z <  
2 

We recognize the r.h.s, to be the smallest solution of  the equation 
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h(t) : =  t 2 - at + b2/4 = O. 

It therefore suffices to show that h (1) > 0 which means that 

1 - a  + b 2 / 4 >  0. 

To show this, we substi tute the values of  a and b to obtain 

X 6 - -  x E ( x  2 -F y2 + 1) + 1 > 0. 

The worst case is i f y  = 1. We then get 

x 6 + 1 > x2(2 + X2). 

This should be true for all x E [ ½ ,  ~]. It is easy to check that x = ] is the worst 

case, in which we obtain 

64 63 
1 +  > 1 + - -  

729 729" 

It is a narrow escape but  it works and it proves the assertion for i = 2. The 

other cases are treated analogously. For i > 3, one obtains a uniform z, 

independent  o f  i. 

(ii) For a change, we prove this assertion in the case i >= 4. Straightforward 

calculations show that 

V~(~, q) = 1 + i ~ '  1 " 

Then JV~ = 1/(1 + i~) 3 and JV; = ( - 3i/(1 + i~) 4, 0), so 

JV[ = 3i 3i 
JV, 1 +i~ < l +½i < 6, 

uniformly in i. 

The remaining cases are treated analogously. • 

The following lemma might be deduced from Lemma 5.2, but  also follows 

from straightforward calculations. 

LEMMA 5.3. IJV'(~)/JE(~l)l <K',  uniformly in i >2 and for all ~, ~lE 
TAi, where K' is some constant. 

Let us now explain how to use these notions to prove Theorem 5.1. Write, 

for all k >_- 0, 
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A(k) = ((x, y )~A+  IT'(x,  y ) ~ A .  for all 0 = i ~ k}. 

Then A(k) ~ A as k ~ ~ .  It therefore suffices to show that A(A(k)) goes down 
exponentially fast. For this we introduce the following notation. 

A cylinder set [c k] = [Co . . . .  , Ck] is defined as 

[c k] = ((x, y )~A+  [ Ti(x, y)~Ac,  for 0 < i < k}. 

If  (x, y)EA(k),  there is a unique cylinder set [c k] such that (x, y )E [c  k] and 
c; # 1, i = 0 . . . . .  k. To prove that 2(A(k)) goes down exponentially fast, we 
will show that 

(**) 2[c0, c l , . . . ,  ck, 1] >_-L'> 0, 

 [c0 . . . .  , ck] 

for all cylinder sets [c k] such that ci ÷ 1, i = 0 . . . . .  k and where L '  is a con- 
stant independent o f k  and c k. To prove (**), observe that T k + ~[c k ] is either A+ 
orA, U A2 U A3. The former occurs iffCk E {2, 3}. Writing V~ for the inverse of 
T k on Tk[ck], we have 

A[c0 . . . . .  ck, 11 J a  
JV~( ~)d2( ~) 

I 

2[c0 , . . . ,  Ck] JVk(tl)d2(~l) 

where E denotes either A+ or A~ U A2 U A3. To prove (**) and therefore 
Theorem 5.1, it now suffices to show that the quotients of the integrands in this 
formula uniformly stay away from zero and infinity. The following lemma 
deals with this property and is sufficient to prove Theorem 5.1. 

LEMMA 5.4. For all k ~ N ,  [ck], andS,  rl~Tk[ck], we have 

1 JVk(~)  L",  

L "  - 

where L " does not depend on ~, rl, k or [ck]. 

PROOF. We write V for a suitable V~ and V' for a suitable composition 
Vl, o - - -  ° Vt,. Then we have 

JV~(ti) , - ,  JV(V 'q )  ~-, \ --J-V(-~q) ~- 1 . 

We have 
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IJV(Vr~)-JV(V'q)I ~ JJV'(0)[" IVrr/-- Vr~l ~ IJV'(0) I . -  

by the r-expansiveness of T, where ~ denotes a suitable point. 

By uniform regularity of JV,. and Lemma 5.3, we have 

J V ~ ( q )  = r =] \ [ JV(Vrr l ) I  • r r 

< e x p  ~ log + 1  < e x p  , 
~=] \z  - 1/ 

r n 

which proves the lemma. 

The reason why we switched from N to T is the fact that N is not uniformly 

expanding. This is easy to see, as DN(O, 1)= id. The proof above does not 

work if we replace T by N. 
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